问题来了,古代没有阿拉伯数字,他是怎么算得呢?首先古代数学是以竹片作为筹码来计算的,据说祖冲之为了计算圆周率,在书房的地面上画了一个直径1 丈的大圆,在大圆里做内接正多边形。使用的方法与刘徽的"割圆术" 一致,唯一不同的是,刘徽当时只做到了内接正96边形,祖冲之做到了做到了惊人的正12288边形。且不去探究这个故事真实与否,我们只需从中体会研究圆周率的困难和祖冲之付出的努力和汗水,这不仅需要细心的运算,更需要耐心和坚忍的意志。
就是在这样的条件下,祖冲之将圆周率的数值精确了小数点后7位,他也是世界上第一位做到如此精确的人。在此后的900多年,一直无人超越,知道15世纪,才被阿拉伯数学家阿尔卡西打破。